2021
Abstract The Windermere Humic Aqueous Model (WHAM) is often used for risk assessment of metals; WHAM can be used to estimate the potential bioavailability of dissolved metals, where metals complexed to dissolved organic matter (DOM) are expected to be less toxic than ionic forms. Silver is a potential metal of concern but WHAM has not been rigorously tested against experimental measurements. This study compares WHAM predictions to measured ionic silver during fixed pH (4, 8 or 10) argentometric titrations of DOM from diverse origins. There were almost two orders of magnitude variation in free silver between sources but, within model uncertainty, WHAM captured this variability. This agreement, between measurements and models, suggests that WHAM is an appropriate tool for silver risk assessment in surface receiving waters when DOM is predominantly in the form of humic/fulvic acids. In sewage samples WHAM dramatically underestimated silver binding by approximately 3 orders of magnitude. Simulations with additional specific strong silver binding sulphide-like binding sites could explain Ag binding at low loadings, but not at higher loadings. This suggests the presence of additional intermediate strength binding sites. These additional ligands would represent components of the raw sewage largely absent in natural waters unimpacted by sewage effluents. A revised empirical model was proposed to account for these sewage-specific binding sites. Further, it is suspected that as sewage organic matter is degraded, either by natural attenuation or by engineered treatment, that sewage organic matter will degrade to a form more readily modelled by WHAM; i.e., humic-like substances. These ageing experiments were performed starting from raw sewage, and the material did in fact become more humic-like, but even after 30 days of aerobic incubation still showed greater Ag+ binding than WHAM predictions. In these incubation experiments it was found that silver (up to 1000 μg/L) had minimal impact on ammonia oxidation kinetics.
2020
The combination of photocatalysis and biodegradation was investigated for the removal of nine selected pharmaceuticals as a means to reduce loadings into the environment. The combined process, consisting of a resource-efficient mild photocatalysis and a subsequent biological treatment, was compared to single processes of intensive photocatalysis and biological treatment. The UV-TiO2 based photocatalysis effectively removed atorvastatin, atenolol and fluoxetine (>80%). Biological treatment after mild photocatalytic pretreatment removed diclofenac effectively (>99%), while it persisted during the single biological treatment (
2018
Decades of studies on endocrine disruption have suggested the need to manage the release of key estrogens from municipal wastewater treatment plants (WWTP). However, the proposed thresholds are below the detection limits of most routine chemical analysis, thereby restricting the ability of watershed managers to assess the environmental exposure appropriately. In this study, we demonstrated the utility of a mechanistic model to address the data gaps on estrogen exposure. Concentrations of the prominent estrogenic contaminants in wastewaters (estrone, estradiol, and ethinylestradiol) were simulated in the Grand River in southern Ontario (Canada) for nine years, including a period when major WWTP upgrades occurred. The predicted concentrations expressed as total estrogenicity (E2 equivalent concentrations) were contrasted to a key estrogenic response (i.e., intersex) in rainbow darter (Etheostoma caeruleum), a wild sentinel fish species. A predicted total estrogenicity in the river of ≥10 ng/L E2 equivalents was associated with high intersex incidence and severity, whereas concentrations <0.1 ng/L E2 equivalents were associated with minimal intersex expression. Exposure to a predicted river concentration of 0.4 ng/L E2 equivalents, the environmental quality standard (EQS) proposed by the European Union for estradiol, was associated with 34% (95% CI:30-38) intersex incidence and a very low severity score of 0.6 (95% CI:0.5-0.7). This exposure is not predicted to cause adverse effects in rainbow darter. The analyses completed in this study were only based on the predicted presence of three major estrogens (E1, E2, EE2), so caution must be exercised when interpreting the results. Nevertheless, this study illustrates the use of models for exposure assessment, especially when measured data are not available.
In this study, the estrogenicity of two major wastewater treatment plant (WWTP) effluents located in the central reaches of the Grand River watershed in southern Ontario was estimated using population demographics, excretion rates, and treatment plant-specific removals. Due to the lack of data on estrogen concentrations from direct measurements at WWTPs, the treatment efficiencies through the plants were estimated using the information obtained from an effects-directed analysis. The results show that this approach could effectively estimate the estrogenicity of WWTP effluents, both before and after major infrastructure upgrades were made at the Kitchener WWTP. The model was then applied to several possible future scenarios including population growth and river low flow conditions. The scenario analyses showed that post-upgrade operation of the Kitchener WWTP will not release highly estrogenic effluent under the 2041 projected population increase (36%) or summer low flows. Similarly, the Waterloo WWTP treatment operation is also expected to improve once the upgrades have been fully implemented and is expected to effectively treat estrogens even under extreme scenarios of population growth and river flows. The developed model may be employed to support decision making on wastewater management strategies designed for environmental protection, especially on reducing the endocrine effects in fish exposed to WWTP effluents.