2023
DOI
bib
abs
The Northwest Territories Thermokarst Mapping Collective: A northern-driven mapping collaborative toward understanding the effects of permafrost thaw
Steven V. Kokelj,
Tristan Gingras-Hill,
Seamus V Daly,
P D Morse,
S A Wolfe,
Ashley Rudy,
Jurjen van der Sluijs,
Niels Weiss,
H B O'Neill,
Jennifer L. Baltzer,
Trevor C. Lantz,
Carolyn Gibson,
Dieter Cazon,
Robert Fraser,
Duane G. Froese,
Garfield Giff,
Charles Klengenberg,
Scott F. Lamoureux,
William L. Quinton,
M. R. Turetsky,
Alexandre Chiasson,
C.C. Ferguson,
Michael Newton,
Mike Pope,
Jason Paul,
A E Wilson,
Joseph M. Young
Arctic Science
This paper documents the first comprehensive inventory of thermokarst and thaw-sensitive terrain indicators for a 2 million km2 region of northwestern Canada. This is accomplished through the Thermokarst Mapping Collective (TMC), a research collaborative to systematically inventory indicators of permafrost thaw sensitivity by mapping and aerial assessments across the Northwest Territories (NT), Canada. The increase in NT-based permafrost capacity has fostered science leadership and collaboration with government, academic, and community researchers to enable project implementation. Ongoing communications and outreach have informed study design and strengthened Indigenous and stakeholder relationships. Documentation of theme-based methods supported mapper training, and flexible data infrastructure facilitated progress by Canada-wide researchers throughout the COVID-19 pandemic. The TMC inventory of thermokarst and thaw-sensitive landforms agree well with fine-scale empirical mapping (69% to 84% accuracy) and aerial inventory (74% to 96% accuracy) datasets. National- and circumpolar-scale modelling of sensitive permafrost terrain contrasts significantly with TMC outputs, highlighting their limitations and the value of empirically-based mapping approaches. We demonstrate that the multi-parameter TMC outputs support a holistic understanding and refined depictions of permafrost terrain sensitivity, provide novel opportunities for syntheses, and inform future modelling approaches, which are urgently required to comprehend better what permafrost thaw means for Canada’s North.
2022
ABSTRACT Simple and robust hydrological modelling is critical for peat studies as water content (θ) and water table depth (d WT) are key controls on many biogeochemical processes. We show that near-surface θ can be a good predictor of θ at any depth and/or d WT in peat. This was achieved by further developing the formulae of an existing model and applying it for Mer Bleue bog (Ontario, Canada) and a permafrost peat plateau at Scotty Creek (Northwest Territories, Canada). Simulated θ dynamics at various depths in hummocks and hollows at both sites matched observations with R2 , Willmott’s index of agreement (d), and normalized Nash-Sutcliffe efficiency coefficient (NNSE), reaching 0.97, 0.95, and 0.86, respectively. Simulated bog WT dynamics matched observations with R2 , d, and NNSE reaching 0.67, 0.87, and 0.72. Our approach circumvents the difficulties of measuring subsurface hydrology and reveals a perspective for large spatial scale estimation of θ and d WT in peat.
DOI
bib
abs
The ABCflux database: Arctic–boreal CO<sub>2</sub> flux observations and ancillary information aggregated to monthly time steps across terrestrial ecosystems
Anna-Maria Virkkala,
Susan M. Natali,
Brendan M. Rogers,
Jennifer D. Watts,
K. E. Savage,
Sara June Connon,
Marguerite Mauritz,
Edward A. G. Schuur,
D. L. Peter,
C. Minions,
Julia Nojeim,
R. Commane,
Craig A. Emmerton,
Mathias Goeckede,
Manuel Helbig,
David Holl,
Hiroyasu Iwata,
Hideki Kobayashi,
Pasi Kolari,
Efrén López‐Blanco,
Maija E. Marushchak,
Mikhail Mastepanov,
Lutz Merbold,
Frans‐Jan W. Parmentier,
Matthias Peichl,
Torsten Sachs,
Oliver Sonnentag,
Masahito Ueyama,
Carolina Voigt,
Mika Aurela,
Julia Boike,
Gerardo Celis,
Namyi Chae,
Torben R. Christensen,
M. Syndonia Bret‐Harte,
Sigrid Dengel,
A. J. Dolman,
C. Edgar,
Bo Elberling,
Eugénie Euskirchen,
Achim Grelle,
Juha Hatakka,
Elyn Humphreys,
Järvi Järveoja,
Ayumi Kotani,
Lars Kutzbach,
Tuomas Laurila,
Annalea Lohila,
Ivan Mammarella,
Yukiko Matsuura,
Gesa Meyer,
Mats Nilsson,
Steven F. Oberbauer,
Sang Jong Park,
Roman E. Petrov,
А. С. Прокушкин,
Christopher Schulze,
Vincent L. St. Louis,
Eeva‐Stiina Tuittila,
Juha‐Pekka Tuovinen,
William L. Quinton,
Andrej Varlagin,
Donatella Zona,
Viacheslav I. Zyryanov
Earth System Science Data, Volume 14, Issue 1
Abstract. Past efforts to synthesize and quantify the magnitude and change in carbon dioxide (CO2) fluxes in terrestrial ecosystems across the rapidly warming Arctic–boreal zone (ABZ) have provided valuable information but were limited in their geographical and temporal coverage. Furthermore, these efforts have been based on data aggregated over varying time periods, often with only minimal site ancillary data, thus limiting their potential to be used in large-scale carbon budget assessments. To bridge these gaps, we developed a standardized monthly database of Arctic–boreal CO2 fluxes (ABCflux) that aggregates in situ measurements of terrestrial net ecosystem CO2 exchange and its derived partitioned component fluxes: gross primary productivity and ecosystem respiration. The data span from 1989 to 2020 with over 70 supporting variables that describe key site conditions (e.g., vegetation and disturbance type), micrometeorological and environmental measurements (e.g., air and soil temperatures), and flux measurement techniques. Here, we describe these variables, the spatial and temporal distribution of observations, the main strengths and limitations of the database, and the potential research opportunities it enables. In total, ABCflux includes 244 sites and 6309 monthly observations; 136 sites and 2217 monthly observations represent tundra, and 108 sites and 4092 observations represent the boreal biome. The database includes fluxes estimated with chamber (19 % of the monthly observations), snow diffusion (3 %) and eddy covariance (78 %) techniques. The largest number of observations were collected during the climatological summer (June–August; 32 %), and fewer observations were available for autumn (September–October; 25 %), winter (December–February; 18 %), and spring (March–May; 25 %). ABCflux can be used in a wide array of empirical, remote sensing and modeling studies to improve understanding of the regional and temporal variability in CO2 fluxes and to better estimate the terrestrial ABZ CO2 budget. ABCflux is openly and freely available online (Virkkala et al., 2021b, https://doi.org/10.3334/ORNLDAAC/1934).
Abstract Climate change is a threat to the 500 Gt carbon stored in northern peatlands. As the region warms, the rise in mean temperature is more pronounced during the non-growing season (NGS, i.e., winter and parts of the shoulder seasons) when net ecosystem loss of carbon dioxide (CO 2 ) occurs. Many studies have investigated the impacts of climate warming on NGS CO 2 emissions, yet there is a lack of consistency amongst researchers in how the NGS period is defined. This complicates the interpretation of NGS CO 2 emissions and hinders our understanding of seasonal drivers of important terrestrial carbon exchange processes. Here, we analyze the impact of alternative definitions of the NGS for a peatland site with multiple years of CO 2 flux records. Three climatic parameters were considered to define the NGS: air temperature, soil temperature, and snow cover. Our findings reveal positive correlations between estimates of the cumulative non-growing season net ecosystem CO 2 exchange (NGS-NEE) and the length of the NGS for each alternative definition, with the greatest proportion of variability explained using snow cover ( R 2 = 0.89, p < 0.001), followed by air temperature ( R 2 = 0.79, p < 0.001) and soil temperature ( R 2 = 0.54, p = 0.006). Using these correlations, we estimate average daily NGS CO 2 emitted between 1.42 and 1.90 gCO 2 m −2 , depending on which NGS definition is used. Our results highlight the need to explicitly define the NGS based on available climatic parameters to account for regional climate and ecosystem variability.
DOI
bib
abs
Permafrost Landscape History Shapes Fluvial Chemistry, Ecosystem Carbon Balance, and Potential Trajectories of Future Change
Scott Zolkos,
Suzanne E. Tank,
Steven V. Kokelj,
Robert G. Striegl,
Sarah Shakil,
Carolina Voigt,
Oliver Sonnentag,
William L. Quinton,
Edward A. G. Schuur,
Donatella Zona,
Peter M. Lafleur,
Ryan C. Sullivan,
Masahito Ueyama,
David P. Billesbach,
David Cook,
Elyn Humphreys,
Philip Marsh
Global Biogeochemical Cycles, Volume 36, Issue 9
Abstract Intensifying permafrost thaw alters carbon cycling by mobilizing large amounts of terrestrial substrate into aquatic ecosystems. Yet, few studies have measured aquatic carbon fluxes and constrained drivers of ecosystem carbon balance across heterogeneous Arctic landscapes. Here, we characterized hydrochemical and landscape controls on fluvial carbon cycling, quantified fluvial carbon fluxes, and estimated fluvial contributions to ecosystem carbon balance across 33 watersheds in four ecoregions in the continuous permafrost zone of the western Canadian Arctic: unglaciated uplands, ice‐rich moraine, and organic‐rich lowlands and till plains. Major ions, stable isotopes, and carbon speciation and fluxes revealed patterns in carbon cycling across ecoregions defined by terrain relief and accumulation of organics. In previously unglaciated mountainous watersheds, bicarbonate dominated carbon export (70% of total) due to chemical weathering of bedrock. In lowland watersheds, where soil organic carbon stores were largest, lateral transport of dissolved organic carbon (50%) and efflux of biotic CO 2 (25%) dominated. In watersheds affected by thaw‐induced mass wasting, erosion of ice‐rich tills enhanced chemical weathering and increased particulate carbon fluxes by two orders of magnitude. From an ecosystem carbon balance perspective, fluvial carbon export in watersheds not affected by thaw‐induced wasting was, on average, equivalent to 6%–16% of estimated net ecosystem exchange (NEE). In watersheds affected by thaw‐induced wasting, fluvial carbon export approached 60% of NEE. Because future intensification of thermokarst activity will amplify fluvial carbon export, determining the fate of carbon across diverse northern landscapes is a priority for constraining trajectories of permafrost region ecosystem carbon balance.
DOI
bib
abs
Vegetation type is an important predictor of the arctic summer land surface energy budget
Jacqueline Oehri,
Gabriela Schaepman‐Strub,
Jin‐Soo Kim,
Raleigh Grysko,
Heather Kropp,
Inge Grünberg,
Vitalii Zemlianskii,
Oliver Sonnentag,
Eugénie Euskirchen,
Merin Reji Chacko,
Giovanni Muscari,
Peter D. Blanken,
Joshua Dean,
Alcide di Sarra,
R. J. Harding,
Ireneusz Sobota,
Lars Kutzbach,
Elena Plekhanova,
Aku Riihelä,
Julia Boike,
Nathaniel B. Miller,
Jason Beringer,
Efrén López‐Blanco,
Paul C. Stoy,
Ryan C. Sullivan,
Marek Kejna,
Frans‐Jan W. Parmentier,
John A. Gamon,
Mikhail Mastepanov,
Christian Wille,
Marcin Jackowicz-Korczyński,
Dirk Nikolaus Karger,
William L. Quinton,
Jaakko Putkonen,
Dirk van As,
Torben R. Christensen,
Maria Z. Hakuba,
Robert S. Stone,
Stefan Metzger,
Baptiste Vandecrux,
G. V. Frost,
Martin Wild,
Birger Ulf Hansen,
Daniela Meloni,
Florent Dominé,
Mariska te Beest,
Torsten Sachs,
Aram Kalhori,
A. V. Rocha,
Scott Williamson,
S. Crepinsek,
A. L. Atchley,
Richard Essery,
Benjamin R. K. Runkle,
David Holl,
Laura D. Riihimaki,
Hiroyasu Iwata,
Edward A. G. Schuur,
Christopher Cox,
A. A. Grachev,
J. P. McFadden,
Robert S. Fausto,
Mathias Goeckede,
Masahito Ueyama,
Norbert Pirk,
Gijs de Boer,
M. Syndonia Bret‐Harte,
Matti Leppäranta,
Konrad Steffen,
Thomas Friborg,
Atsumu Ohmura,
C. Edgar,
Johan Olofsson,
Scott D. Chambers
Nature Communications, Volume 13, Issue 1
Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.
2021
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff.
DOI
bib
abs
Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites
Housen Chu,
Xiangzhong Luo,
Zutao Ouyang,
Chan Sc,
Sigrid Dengel,
S. Biraud,
M. S. Torn,
Stefan Metzger,
Jitendra Kumar,
M. Altaf Arain,
T. J. Arkebauer,
Dennis Baldocchi,
Carl J. Bernacchi,
D. P. Billesbach,
T. Andrew Black,
Peter D. Blanken,
Gil Bohrer,
Rosvel Bracho,
Scott Brown,
Nathaniel A. Brunsell,
Jiquan Chen,
Xingyuan Chen,
Kenneth L. Clark,
Ankur R. Desai,
Tomer Duman,
David Durden,
Silvano Fares,
Inke Forbrich,
John A. Gamon,
Christopher M. Gough,
Timothy J. Griffis,
Manuel Helbig,
David Y. Hollinger,
Elyn Humphreys,
Hiroki Ikawa,
Hiroyasu Iwata,
Yang Ju,
John F. Knowles,
Sara Knox,
Hideki Kobayashi,
Thomas E. Kolb,
Beverly E. Law,
Xuhui Lee,
M. E. Litvak,
Heping Li,
J. William Munger,
Asko Noormets,
Kim Novick,
Steven F. Oberbauer,
Walter C. Oechel,
Patricia Y. Oikawa,
S. A. Papuga,
Elise Pendall,
Prajaya Prajapati,
John H. Prueger,
William L. Quinton,
Andrew D. Richardson,
Eric S. Russell,
Russell L. Scott,
Gregory Starr,
R. M. Staebler,
Paul C. Stoy,
Ellen Stuart-Haëntjens,
Oliver Sonnentag,
Ryan C. Sullivan,
Andy Suyker,
Masahito Ueyama,
Rodrigo Vargas,
J. D. Wood,
Donatella Zona
Agricultural and Forest Meteorology, Volume 301-302
• Large-scale eddy-covariance flux datasets need to be used with footprint-awareness • Using a fixed-extent target area across sites can bias model-data integration • Most sites do not represent the dominant land-cover type at a larger spatial extent • A representativeness index provides general guidance for site selection and data use Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 10 3 to 10 7 m 2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
DOI
bib
abs
Summary and synthesis of Changing Cold Regions Network (CCRN) research in the interior of western Canada – Part 2: Future change in cryosphere, vegetation, and hydrology
C. M. DeBeer,
H. S. Wheater,
John W. Pomeroy,
Alan Barr,
Jennifer L. Baltzer,
Jill F. Johnstone,
M. R. Turetsky,
Ronald E. Stewart,
Masaki Hayashi,
Garth van der Kamp,
Shawn J. Marshall,
Elizabeth M. Campbell,
Philip Marsh,
Sean K. Carey,
William L. Quinton,
Yanping Li,
Saman Razavi,
Aaron Berg,
Jeffrey J. McDonnell,
Christopher Spence,
Warren Helgason,
A. M. Ireson,
T. Andrew Black,
Mohamed Elshamy,
Fuad Yassin,
Bruce Davison,
Allan Howard,
Julie M. Thériault,
Kevin Shook,
M. N. Demuth,
Alain Pietroniro
Hydrology and Earth System Sciences, Volume 25, Issue 4
Abstract. The interior of western Canada, like many similar cold mid- to high-latitude regions worldwide, is undergoing extensive and rapid climate and environmental change, which may accelerate in the coming decades. Understanding and predicting changes in coupled climate–land–hydrological systems are crucial to society yet limited by lack of understanding of changes in cold-region process responses and interactions, along with their representation in most current-generation land-surface and hydrological models. It is essential to consider the underlying processes and base predictive models on the proper physics, especially under conditions of non-stationarity where the past is no longer a reliable guide to the future and system trajectories can be unexpected. These challenges were forefront in the recently completed Changing Cold Regions Network (CCRN), which assembled and focused a wide range of multi-disciplinary expertise to improve the understanding, diagnosis, and prediction of change over the cold interior of western Canada. CCRN advanced knowledge of fundamental cold-region ecological and hydrological processes through observation and experimentation across a network of highly instrumented research basins and other sites. Significant efforts were made to improve the functionality and process representation, based on this improved understanding, within the fine-scale Cold Regions Hydrological Modelling (CRHM) platform and the large-scale Modélisation Environmentale Communautaire (MEC) – Surface and Hydrology (MESH) model. These models were, and continue to be, applied under past and projected future climates and under current and expected future land and vegetation cover configurations to diagnose historical change and predict possible future hydrological responses. This second of two articles synthesizes the nature and understanding of cold-region processes and Earth system responses to future climate, as advanced by CCRN. These include changing precipitation and moisture feedbacks to the atmosphere; altered snow regimes, changing balance of snowfall and rainfall, and glacier loss; vegetation responses to climate and the loss of ecosystem resilience to wildfire and disturbance; thawing permafrost and its influence on landscapes and hydrology; groundwater storage and cycling and its connections to surface water; and stream and river discharge as influenced by the various drivers of hydrological change. Collective insights, expert elicitation, and model application are used to provide a synthesis of this change over the CCRN region for the late 21st century.
DOI
bib
abs
Temperature, moisture and freeze–thaw controls on CO2 production in soil incubations from northern peatlands
Eunji Byun,
Fereidoun Rezanezhad,
Linden Fairbairn,
Stephanie Slowinski,
Nathan Basiliko,
Jonathan S. Price,
William L. Quinton,
Pascale Roy-Léveillée,
Kara Webster,
Philippe Van Cappellen
Scientific Reports, Volume 11, Issue 1
Peat accumulation in high latitude wetlands represents a natural long-term carbon sink, resulting from the cumulative excess of growing season net ecosystem production over non-growing season (NGS) net mineralization in soils. With high latitudes experiencing warming at a faster pace than the global average, especially during the NGS, a major concern is that enhanced mineralization of soil organic carbon will steadily increase CO2 emissions from northern peatlands. In this study, we conducted laboratory incubations with soils from boreal and temperate peatlands across Canada. Peat soils were pretreated for different soil moisture levels, and CO2 production rates were measured at 12 sequential temperatures, covering a range from - 10 to + 35 °C including one freeze-thaw event. On average, the CO2 production rates in the boreal peat samples increased more sharply with temperature than in the temperate peat samples. For same temperature, optimum soil moisture levels for CO2 production were higher in the peat samples from more flooded sites. However, standard reaction kinetics (e.g., Q10 temperature coefficient and Arrhenius equation) failed to account for the apparent lack of temperature dependence of CO2 production rates measured below 0 °C, and a sudden increase after a freezing event. Thus, we caution against using the simple kinetic expressions to represent the CO2 emissions from northern peatlands, especially regarding the long NGS period with multiple soil freeze and thaw events.
Abstract Peatlands are important ecosystems that store approximately one third of terrestrial organic carbon. Non-growing season carbon fluxes significantly contribute to annual carbon budgets in peatlands, yet their response to climate change is poorly understood. Here, we investigate the governing environmental variables of non-growing season carbon emissions in a northern peatland. We develop a support-vector regression model using a continuous 13-year dataset of eddy covariance flux measurements from the Mer Blue Bog, Canada. We determine that only seven variables were needed to reproduce carbon fluxes, which were most sensitive to net radiation above the canopy, soil temperature, wind speed and soil moisture. We find that changes in soil temperature and photosynthesis drove changes in net carbon flux. Assessing net ecosystem carbon exchange under three representative concentration pathways, we project a 103% increase in peatland carbon loss by 2100 under a high emissions scenario. We suggest that peatland carbon losses constitute a strong positive climate feedback loop.
2020
DOI
bib
abs
Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
Manuel Helbig,
J. M. Waddington,
Pavel Alekseychik,
B.D. Amiro,
Mika Aurela,
Alan G. Barr,
T. Andrew Black,
Peter D. Blanken,
Sean K. Carey,
Jiquan Chen,
Jinshu Chi,
Ankur R. Desai,
Allison L. Dunn,
Eugénie Euskirchen,
Lawrence B. Flanagan,
Inke Forbrich,
Thomas Friborg,
Achim Grelle,
Silvie Harder,
Michal Heliasz,
Elyn Humphreys,
Hiroki Ikawa,
Pierre‐Érik Isabelle,
Hiroyasu Iwata,
Rachhpal S. Jassal,
Mika Korkiakoski,
Juliya Kurbatova,
Lars Kutzbach,
Anders Lindroth,
Mikaell Ottosson Löfvenius,
Annalea Lohila,
Ivan Mammarella,
Philip Marsh,
Trofim C. Maximov,
Joe R. Melton,
Paul A. Moore,
Daniel F. Nadeau,
Erin M. Nicholls,
Mats Nilsson,
Takeshi Ohta,
Matthias Peichl,
Richard M. Petrone,
Roman E. Petrov,
Anatoly Prokushkin,
William L. Quinton,
David E. Reed,
Nigel T. Roulet,
Benjamin R. K. Runkle,
Oliver Sonnentag,
I. B. Strachan,
Pierre Taillardat,
Eeva‐Stiina Tuittila,
Juha‐Pekka Tuovinen,
J. Turner,
Masahito Ueyama,
Andrej Varlagin,
Martin Wilmking,
Steven C. Wofsy,
Vyacheslav Zyrianov
Nature Climate Change, Volume 10, Issue 6
The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091–2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections.
Peatlands are wetlands that provide important ecosystem services including carbon sequestration and water storage that respond to hydrological, biological, and biogeochemical processes. These processes are strongly influenced by the complex pore structure of peat soils. We explore the literature on peat pore structure and the implications for hydrological, biogeochemical, and microbial processes in peat, highlighting the gaps in our current knowledge and a path to move forward. Peat is an elastic and multi-porous structured organic soil. Surficial (near-surface) peats are typically dominated by large interconnected macropores that rapidly transmit water and solutes when saturated, but these large pores drain rapidly with a reduction in pore-water pressure, and disproportionally decrease the bulk effective hydraulic conductivity, thus water fluxes that drive ecohydrological functions. The more advanced state of decomposition of older (deeper) peat, with a greater abundance of small pores, restricts the loss of moisture at similar soil water pressures and is associated with higher unsaturated hydraulic conductivities. As evaporation and precipitation occur, peat soils shrink and swell, respectively, changing the hydrological connectivity that maintain physiological processes at the peat surface. Due to the disproportionate change in pore structure and associated hydraulic properties with state of decomposition, transport processes are limited at depth, creating a zone of enhanced transport in the less decomposed peat near the surface. At the micro-scale, rapid equilibration of solutes and water occurs between the mobile and immobile pores due to diffusion, resulting in pore regions with similar chemical concentrations that are not affected by advective fluxes. These immobile regions may be the primary sites for microbial biogeochemical processes in peat. Mass transfer limitations may therefore largely regulate belowground microbial turnover and, hence, biogeochemical cycling. For peat, the development of a comprehensive theory that links the hydrological, biological, and biogeochemical processes will require a concerted interdisciplinary effort. To that end, we have highlighted four primary areas to focus our collective research: 1) understanding the combined and interrelated effects of parent material, decomposition, and nutrient status on peat pore connectivity, macropore development and collapse, and solute transport, 2) determining the influence of changing pore structure due to freeze-thaw or dewatering on the hydrology and biogeochemistry, 3) better elucidating the non-equilibrium transport processes in peat, and 4) exploring the implications of peat’s pore structure on microbiological and biogeochemical processes.
DOI
bib
abs
The biophysical climate mitigation potential of boreal peatlands during the growing season
Manuel Helbig,
J. M. Waddington,
Pavel Alekseychik,
B.D. Amiro,
Mika Aurela,
Alan G. Barr,
T. Andrew Black,
Sean K. Carey,
Jiquan Chen,
Jinshu Chi,
Ankur R. Desai,
Allison L. Dunn,
Eugénie Euskirchen,
Lawrence B. Flanagan,
Thomas Friborg,
Michelle Garneau,
Achim Grelle,
Silvie Harder,
Michal Heliasz,
Elyn Humphreys,
Hiroki Ikawa,
Pierre‐Érik Isabelle,
Hiroyasu Iwata,
Rachhpal S. Jassal,
Mika Korkiakoski,
Juliya Kurbatova,
Lars Kutzbach,
Е. Д. Лапшина,
Anders Lindroth,
Mikaell Ottosson Löfvenius,
Annalea Lohila,
Ivan Mammarella,
Philip Marsh,
Paul A. Moore,
Trofim C. Maximov,
Daniel F. Nadeau,
Erin M. Nicholls,
Mats Nilsson,
Takeshi Ohta,
Matthias Peichl,
Richard M. Petrone,
Anatoly Prokushkin,
William L. Quinton,
Nigel T. Roulet,
Benjamin R. K. Runkle,
Oliver Sonnentag,
I. B. Strachan,
Pierre Taillardat,
Eeva‐Stiina Tuittila,
Juha‐Pekka Tuovinen,
J. Turner,
Masahito Ueyama,
Andrej Varlagin,
Timo Vesala,
Martin Wilmking,
Vyacheslav Zyrianov,
Christopher Schulze
Environmental Research Letters, Volume 15, Issue 10
Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests - the dominant boreal forest type - and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a ∼20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 °C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (∼45°N) and decrease toward the northern limit of the boreal biome (∼70°N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining. © 2020 The Author(s). Published by IOP Publishing Ltd. (Less)
Understanding the role of forest fires on water budgets of subarctic Precambrian Shield catchments is important because of growing evidence that fire activity is increasing. Most research has focused on assessing impacts on individual landscape units, so it is unclear how changes manifest at the catchment scale enough to alter water budgets. The objective of this study was to determine the water budget impact of a forest fire that partially burned a ~450 km2 subarctic Precambrian Shield basin. Water budget components were measured in a pair of catchments: one burnt and another unburnt. Burnt and unburnt areas had comparable net radiation, but thaw was deeper in burned areas. There were deeper snow packs in burns. Differences in streamflow between the catchments were within measurement uncertainty. Enhanced winter streamflow from the burned watershed was evident by icing growth at the streamflow gauge location, which was not observed in the unburned catchment. Wintertime water chemistry was also clearly elevated in dissolved organics, and organic‐associated nutrients. Application of a framework to assess hydrological resilience of watersheds to wildfire reveal that watersheds with both high bedrock and open water fractions are more resilient to hydrological change after fire in the subarctic shield, and resilience decreases with increasingly climatically wet conditions. This suggests significant changes in runoff magnitude, timing and water chemistry of many Shield catchments following wildfire depend on pre‐fire land cover distribution, the extent of the wildfire and climatic conditions that follow the fire.
2019
DOI
bib
abs
Increased high‐latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition
Zhi Hua Liu,
J. S. Kimball,
Nicholas C. Parazoo,
Ashley P. Ballantyne,
Wen J. Wang,
Nima Madani,
Caleb G. Pan,
Jennifer D. Watts,
Rolf H. Reichle,
Oliver Sonnentag,
Philip Marsh,
Miriam Hurkuck,
Manuel Helbig,
William L. Quinton,
Donatella Zona,
Masahito Ueyama,
Hideki Kobayashi,
Eugénie Euskirchen
Global Change Biology, Volume 26, Issue 2
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2 ) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010-2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon-climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.
DOI
bib
abs
Large loss of CO2 in winter observed across the northern permafrost region
Susan M. Natali,
Jennifer D. Watts,
Brendan M. Rogers,
Stefano Potter,
S. Ludwig,
A. K. Selbmann,
Patrick F. Sullivan,
Benjamin W. Abbott,
Kyle A. Arndt,
Leah Birch,
Mats Björkman,
A. Anthony Bloom,
Gerardo Celis,
Torben R. Christensen,
Casper T. Christiansen,
R. Commane,
Elisabeth J. Cooper,
Patrick Crill,
C. I. Czimczik,
S. P. Davydov,
Jinyang Du,
Jocelyn Egan,
Bo Elberling,
Eugénie Euskirchen,
Thomas Friborg,
Hélène Genet,
Mathias Göckede,
Jordan P. Goodrich,
Paul Grogan,
Manuel Helbig,
Elchin Jafarov,
Julie D. Jastrow,
Aram Kalhori,
Yongwon Kim,
J. S. Kimball,
Lars Kutzbach,
Mark J. Lara,
Klaus Steenberg Larsen,
Bang Yong Lee,
Zhihua Liu,
M. M. Loranty,
Magnus Lund,
Massimo Lupascu,
Nima Madani,
Avni Malhotra,
Roser Matamala,
J. W. Mcfarland,
A. David McGuire,
Anders Michelsen,
C. Minions,
Walter C. Oechel,
David Olefeldt,
Frans‐Jan W. Parmentier,
Norbert Pirk,
Benjamin Poulter,
William L. Quinton,
Fereidoun Rezanezhad,
David Risk,
Torsten Sachs,
Kevin Schaefer,
Niels Martin Schmidt,
Edward A. G. Schuur,
Philipp Semenchuk,
Gaius R. Shaver,
Oliver Sonnentag,
Gregory Starr,
Claire C. Treat,
Mark P. Waldrop,
Yihui Wang,
Jeffrey M. Welker,
Christian Wille,
Xiaofeng Xu,
Zhen Zhang,
Qianlai Zhuang,
Donatella Zona
Nature Climate Change, Volume 9, Issue 11
Recent warming in the Arctic, which has been amplified during the winter1-3, greatly enhances microbial decomposition of soil organic matter and subsequent release of carbon dioxide (CO2)4. However, the amount of CO2 released in winter is highly uncertain and has not been well represented by ecosystem models or by empirically-based estimates5,6. Here we synthesize regional in situ observations of CO2 flux from arctic and boreal soils to assess current and future winter carbon losses from the northern permafrost domain. We estimate a contemporary loss of 1662 Tg C yr-1 from the permafrost region during the winter season (October through April). This loss is greater than the average growing season carbon uptake for this region estimated from process models (-1032 Tg C yr-1). Extending model predictions to warmer conditions in 2100 indicates that winter CO2 emissions will increase 17% under a moderate mitigation scenario-Representative Concentration Pathway (RCP) 4.5-and 41% under business-as-usual emissions scenario-RCP 8.5. Our results provide a new baseline for winter CO2 emissions from northern terrestrial regions and indicate that enhanced soil CO2 loss due to winter warming may offset growing season carbon uptake under future climatic conditions.
DOI
bib
abs
Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations
Olli Peltola,
Timo Vesala,
Yao Gao,
Olle Räty,
Pavel Alekseychik,
Mika Aurela,
Bogdan H. Chojnicki,
Ankur R. Desai,
A. J. Dolman,
Eugénie Euskirchen,
Thomas Friborg,
Mathias Göckede,
Manuel Helbig,
Elyn Humphreys,
Robert B. Jackson,
Georg Jocher,
Fortunat Joos,
Janina Klatt,
Sara Knox,
Natalia Kowalska,
Lars Kutzbach,
Sebastian Lienert,
Annalea Lohila,
Ivan Mammarella,
Daniel F. Nadeau,
Mats Nilsson,
Walter C. Oechel,
Matthias Peichl,
Thomas G. Pypker,
William L. Quinton,
Janne Rinne,
Torsten Sachs,
Mateusz Samson,
Hans Peter Schmid,
Oliver Sonnentag,
Christian Wille,
Donatella Zona,
Tuula Aalto
Earth System Science Data, Volume 11, Issue 3
Abstract. Natural wetlands constitute the largest and most uncertain source of methane (CH4) to the atmosphere and a large fraction of them are found in the northern latitudes. These emissions are typically estimated using process (“bottom-up”) or inversion (“top-down”) models. However, estimates from these two types of models are not independent of each other since the top-down estimates usually rely on the a priori estimation of these emissions obtained with process models. Hence, independent spatially explicit validation data are needed. Here we utilize a random forest (RF) machine-learning technique to upscale CH4 eddy covariance flux measurements from 25 sites to estimate CH4 wetland emissions from the northern latitudes (north of 45∘ N). Eddy covariance data from 2005 to 2016 are used for model development. The model is then used to predict emissions during 2013 and 2014. The predictive performance of the RF model is evaluated using a leave-one-site-out cross-validation scheme. The performance (Nash–Sutcliffe model efficiency =0.47) is comparable to previous studies upscaling net ecosystem exchange of carbon dioxide and studies comparing process model output against site-level CH4 emission data. The global distribution of wetlands is one major source of uncertainty for upscaling CH4. Thus, three wetland distribution maps are utilized in the upscaling. Depending on the wetland distribution map, the annual emissions for the northern wetlands yield 32 (22.3–41.2, 95 % confidence interval calculated from a RF model ensemble), 31 (21.4–39.9) or 38 (25.9–49.5) Tg(CH4) yr−1. To further evaluate the uncertainties of the upscaled CH4 flux data products we also compared them against output from two process models (LPX-Bern and WetCHARTs), and methodological issues related to CH4 flux upscaling are discussed. The monthly upscaled CH4 flux data products are available at https://doi.org/10.5281/zenodo.2560163 (Peltola et al., 2019).
DOI
bib
abs
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
William L. Quinton,
Aaron Berg,
Michael Braverman,
Olivia Carpino,
L. Chasmer,
Ryan F. Connon,
James R. Craig,
Élise Devoie,
Masaki Hayashi,
Kristine M. Haynes,
David Olefeldt,
Alain Pietroniro,
Fereidoun Rezanezhad,
Robert A. Schincariol,
Oliver Sonnentag
Hydrology and Earth System Sciences, Volume 23, Issue 4
Abstract. Scotty Creek, Northwest Territories (NWT), Canada, has been the focus of hydrological research for nearly three decades. Over this period, field and modelling studies have generated new insights into the thermal and physical mechanisms governing the flux and storage of water in the wetland-dominated regions of discontinuous permafrost that characterises much of the Canadian and circumpolar subarctic. Research at Scotty Creek has coincided with a period of unprecedented climate warming, permafrost thaw, and resulting land cover transformations including the expansion of wetland areas and loss of forests. This paper (1) synthesises field and modelling studies at Scotty Creek, (2) highlights the key insights of these studies on the major water flux and storage processes operating within and between the major land cover types, and (3) provides insights into the rate and pattern of the permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the study region.
Permafrost degradation in the peat‐rich southern fringe of the discontinuous permafrost zone is catalysing substantial changes to land cover with expansion of permafrost‐free wetlands (bogs and fens) and shrinkage of forest‐dominated permafrost peat plateaux. Predicting discharge from headwater basins in this region depends upon understanding and numerically representing the interactions between storage and discharge within and between the major land cover types and how these interactions are changing. To better understand the implications of advanced permafrost thaw‐induced land cover change on wetland discharge, with all landscape features capable of contributing to drainage networks, the hydrological behaviour of a channel fen sub‐basin in the headwaters of Scotty Creek, Northwest Territories, Canada, dominated by peat plateau–bog complexes, was modelled using the Cold Regions Hydrological Modelling platform for the period of 2009 to 2015. The model construction was based on field water balance observations, and performance was deemed adequate when evaluated against measured water balance components. A sensitivity analysis was conducted to assess the impact of progressive permafrost loss on discharge from the sub‐basin, in which all units of the sub‐basin have the potential to contribute to the drainage network, by incrementally reducing the ratio of wetland to plateau in the modelled sub‐basin. Simulated reductions in permafrost extent decreased total annual discharge from the channel fen by 2.5% for every 10% decrease in permafrost area due to increased surface storage capacity, reduced run‐off efficiency, and increased landscape evapotranspiration. Runoff ratios for the fen hydrological response unit dropped from 0.54 to 0.48 after the simulated 50% permafrost area loss with a substantial reduction of 0.47 to 0.31 during the snowmelt season. The reduction in peat plateau area resulted in decreased seasonal variability in discharge due to changes in the flow path routing, with amplified low flows associated with small increases in subsurface discharge, and decreased peak discharge with large reductions in surface run‐off.
Peatlands in the Western Boreal Plains act as important water sources in the landscape. Their persistence, despite potential evapotranspiration (PET) often exceeding annual precipitation, is attributed to various water storage mechanisms. One storage element that has been understudied is seasonal ground ice (SGI). This study characterized spring SGI conditions and explored its impacts on available energy, actual evapotranspiration, water table, and near surface soil moisture in a western boreal plains peatland. The majority of SGI melt took place over May 2017. Microtopography had limited impact on melt rates due to wet conditions. SGI melt released 139mm in ice water equivalent (IWE) within the top 30cm of the peat, and weak significant relationships with water table and surface moisture suggest that SGI could be important for maintaining vegetation transpiration during dry springs. Melting SGI decreased available energy causing small reductions in PET (<10mm over the melt period) and appeared to reduce actual evapotranspiration variability but not mean rates, likely due to slow melt rates. This suggests that melting SGI supplies water, allowing evapotranspiration to occur at near potential rates, but reduces the overall rate at which evapotranspiration could occur (PET). The role of SGI may help peatlands in headwater catchments act as a conveyor of water to downstream landscapes during the spring while acting as a supply of water for the peatland. Future work should investigate SGI influences on evapotranspiration under differing peatland types, wet and dry spring conditions, and if the spatial variability of SGI melt leads to spatial variability in evapotranspiration.
2018
Measurements of active layer thickness (ALT) are typically taken at the end of summer, a time synonymous with maximum thaw depth. By definition, the active layer is the layer above permafrost that freezes and thaws annually. This study, conducted in peatlands of subarctic Canada, in the zone of thawing discontinuous permafrost, demonstrates that the entire thickness of ground atop permafrost does not always refreeze over winter. In these instances, a talik exists between the permafrost and active layer, and ALT must therefore be measured by the depth of refreeze at the end of winter. As talik thickness increases at the expense of the underlying permafrost, ALT is shown to simultaneously decrease. This suggests that the active layer has a maximum thickness that is controlled by the amount of energy lost from the ground to the atmosphere during winter. The taliks documented in this study are relatively thin (<2 m) and exist on forested peat plateaus. The presence of taliks greatly affects the stability of the underlying permafrost. Vertical permafrost thaw was found to be significantly greater in areas with taliks (0.07 m year−1) than without (0.01 m year−1). Furthermore, the spatial distribution of areas with taliks increased between 2011 and 2015 from 20% to 48%, a phenomenon likely caused by an anomalously large ground heat flux input in 2012. Rapid talik development and accelerated permafrost thaw indicates that permafrost loss may exhibit a nonlinear response to warming temperatures. Documentation of refreeze depths and talik development is needed across the circumpolar north.
Evapotranspiration (ET) is a key component of the water cycle, whereby accurate partitioning of ET into evaporation and transpiration provides important information about the intrinsically coupled carbon, water, and energy fluxes. Currently, global estimates of partitioned evaporative and transpiration fluxes remain highly uncertain, especially for high‐latitude ecosystems where measurements are scarce. Forested peat plateaus underlain by permafrost and surrounded by permafrost‐free wetlands characterize approximately 60% (7.0 × 107 km2) of Canadian peatlands. In this study, 22 Picea mariana (black spruce) individuals, the most common tree species of the North American boreal forest, were instrumented with sap flow sensors within the footprint of an eddy covariance tower measuring ET from a forest–wetland mosaic landscape. Sap flux density (JS), together with remote sensing data and in situ measurements of canopy structure, was used to upscale tree‐level JS to overstorey transpiration (TBS). Black spruce trees growing in nutrient‐poor permafrost peat soils were found to have lower mean JS than those growing in mineral soils. Overall, TBS contributed less than 1% to landscape ET. Climate‐change‐induced forest loss and the expansion of wetlands may further minimize the contributions of TBS to ET and increase the contribution of standing water.
Permafrost vulnerability to climate change may be underestimated unless effects of wildfire are considered. Here we assess impacts of wildfire on soil thermal regime and rate of thermokarst bog expansion resulting from complete permafrost thaw in western Canadian permafrost peatlands. Effects of wildfire on permafrost peatlands last for 30 years and include a warmer and deeper active layer, and spatial expansion of continuously thawed soil layers (taliks). These impacts on the soil thermal regime are associated with a tripled rate of thermokarst bog expansion along permafrost edges. Our results suggest that wildfire is directly responsible for 2200 ± 1500 km2 (95% CI) of thermokarst bog development in the study region over the last 30 years, representing ~25% of all thermokarst bog expansion during this period. With increasing fire frequency under a warming climate, this study emphasizes the need to consider wildfires when projecting future circumpolar permafrost thaw.
2017
About a fifth of the global wetland methane emissions originate from boreal peatlands, which represent an important land cover type in boreal landscapes in the sporadic permafrost zone. There, rising air temperatures could lead to warmer spring and longer growing seasons, changing landscape methane emissions. To quantify the effect of warmer spring conditions on methane emissions of a boreal peat landscape in the sporadic permafrost zone of northwestern Canada, we analyzed four years (2013 – 2016) of methane fluxes measured with the eddy covariance technique and long-term (1951-2016) meteorological observations from a nearby climate station. In May, after snowmelt was complete, mean air temperatures were more than 2 °C warmer in 2013, 2015, and 2016 than in 2014. Mean growing season (May-August) air temperatures, in contrast, differed by less than 1 °C over the four years. Warmer May air temperatures caused earlier wetland soil warming, with temperatures rising from ~0 °C to g12 °C 25 to 40 days earlier and leading to ~6 °C warmer mean soil temperatures between May and June. However, from July to August, soil temperatures were similar among years. Mean May to August and annual methane emissions (6.4 g CH4 m-2 and 9.4 g CH4 m-2, respectively) of years with warmer spring (i.e., May) temperatures exceeded emissions during the cooler year by 20-30 % (4.5 g CH4 m-2 and 7.2 g CH4 m-2, respectively). Among years with warmer springs, growing season methane emissions varied little (0.5 g CH4 m-2). The observed interannual differences are most likely caused by a strong soil temperature control on methane fluxes and large soil temperature differences during the spring. Thus, in a warming climate, methane emissions from waterlogged boreal peat landscapes at the southern limit of permafrost are likely to increase in response to more frequent occurrences of warm springs.