Zong‐Liang Yang


2020

DOI bib
Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers
Wen‐Ying Wu, Ming Lo, Yoshihide Wada, J. S. Famiglietti, J. T. Reager, Pat J.‐F. Yeh, Agnès Ducharne, Zong‐Liang Yang
Nature Communications, Volume 11, Issue 1

Abstract Groundwater provides critical freshwater supply, particularly in dry regions where surface water availability is limited. Climate change impacts on GWS (groundwater storage) could affect the sustainability of freshwater resources. Here, we used a fully-coupled climate model to investigate GWS changes over seven critical aquifers identified as significantly distressed by satellite observations. We assessed the potential climate-driven impacts on GWS changes throughout the 21 st century under the business-as-usual scenario (RCP8.5). Results show that the climate-driven impacts on GWS changes do not necessarily reflect the long-term trend in precipitation; instead, the trend may result from enhancement of evapotranspiration, and reduction in snowmelt, which collectively lead to divergent responses of GWS changes across different aquifers. Finally, we compare the climate-driven and anthropogenic pumping impacts. The reduction in GWS is mainly due to the combined impacts of over-pumping and climate effects; however, the contribution of pumping could easily far exceed the natural replenishment.

2018

DOI bib
Missing pieces to modeling the Arctic-Boreal puzzle
Joshua B. Fisher, D. J. Hayes, Christopher R. Schwalm, D. N. Huntzinger, Eric Stofferahn, Kevin Schaefer, Yiqi Luo, Stan D. Wullschleger, Scott J. Goetz, Charles E. Miller, P. C. Griffith, Sarah Chadburn, Abhishek Chatterjee, Philippe Ciais, Thomas A. Douglas, Hélène Genet, Akihiko Ito, C. S. R. Neigh, Benjamin Poulter, Brendan M. Rogers, Oliver Sonnentag, Hanqin Tian, Weile Wang, Yongkang Xue, Zong‐Liang Yang, Ning Zeng, Zhen Zhang
Environmental Research Letters, Volume 13, Issue 2

Author(s): Fisher, JB; Hayes, DJ; Schwalm, CR; Huntzinger, DN; Stofferahn, E; Schaefer, K; Luo, Y; Wullschleger, SD; Goetz, S; Miller, CE; Griffith, P; Chadburn, S; Chatterjee, A; Ciais, P; Douglas, TA; Genet, H; Ito, A; Neigh, CSR; Poulter, B; Rogers, BM; Sonnentag, O; Tian, H; Wang, W; Xue, Y; Yang, ZL; Zeng, N; Zhang, Z | Abstract: NASA has launched the decade-long Arctic-Boreal Vulnerability Experiment (ABoVE). While the initial phases focus on field and airborne data collection, early integration with modeling activities is important to benefit future modeling syntheses. We compiled feedback from ecosystem modeling teams on key data needs, which encompass carbon biogeochemistry, vegetation, permafrost, hydrology, and disturbance dynamics. A suite of variables was identified as part of this activity with a critical requirement that they are collected concurrently and representatively over space and time. Individual projects in ABoVE may not capture all these needs, and thus there is both demand and opportunity for the augmentation of field observations, and synthesis of the observations that are collected, to ensure that science questions and integrated modeling activities are successfully implemented.