Hydrology and Earth System Sciences, Volume 23, Issue 9


Anthology ID:
G19-11
Month:
Year:
2019
Address:
Venue:
GWF
SIG:
Publisher:
Copernicus GmbH
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G19-11
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
Assessing inter-annual and seasonal patterns of DOC and DOM quality across a complex alpine watershed underlain by discontinuous permafrost in Yukon, Canada
Nadine J. Shatilla | Sean K. Carey

Abstract. High-latitude environments store approximately half of the global organic carbon pool in peatlands, organic soils and permafrost, while large Arctic rivers convey an estimated 18–50 Tg C a−1 to the Arctic Ocean. Warming trends associated with climate change affect dissolved organic carbon (DOC) export from terrestrial to riverine environments. However, there is limited consensus as to whether exports will increase or decrease due to complex interactions between climate, soils, vegetation, and associated production, mobilization and transport processes. A large body of research has focused on large river system DOC and dissolved organic matter (DOM) lability and observed trends conserved across years, whereas investigation at smaller watershed scales show that thermokarst and fire have a transient impact on hydrologically mediated solute transport. This study, located in the Wolf Creek Research Basin situated ∼20 km south of Whitehorse, YT, Canada, utilizes a nested design to assess seasonal and annual patterns of DOC and DOM composition across diverse landscape types (headwater, wetland and lake) and watershed scales. Peak DOC concentration and export occurred during freshet, as is the case in most northern watersheds; however, peaks were lower than a decade ago at the headwater site Granger Creek. DOM composition was most variable during freshet with high A254 and SUVA254 and low FI and BIX. DOM composition was relatively insensitive to flow variation during summer and fall. The influence of increasing watershed scale and downstream mixing of landscape contributions was an overall dampening of DOC concentrations and optical indices with increasing groundwater contribution. Forecasted vegetation shifts, enhanced permafrost and seasonal thaw, earlier snowmelt, increased rainfall and other projected climate-driven changes will alter DOM sources and transport pathways. The results from this study support a projected shift from predominantly organic soils (high aromaticity and less fresh) to decomposing vegetation (more fresh and lower aromaticity). These changes may also facilitate flow and transport via deeper flow pathways and enhance groundwater contributions to runoff.

pdf bib
Precipitation transition regions over the southern Canadian Cordillera during January–April 2010 and under a pseudo-global-warming assumption
Juris Almonte | Ronald E. Stewart

Abstract. The occurrence of various types of winter precipitation is an important issue over the southern Canadian Cordillera. This issue is examined from January to April of 2010 by exploiting the high-resolution Weather Research and Forecasting (WRF) model Version 3.4.1 dataset that was used to simulate both a historical reanalysis-driven (control – CTRL) and a pseudo-global-warming (PGW) experiment (Liu et al., 2016). Transition regions, consisting of both liquid and solid precipitation or liquid precipitation below 0 ∘C, occurred on 93 % and 94 % of the days in the present and PGW future, respectively. This led to accumulated precipitation within the transition region increasing by 27 % and was associated with a rise in its average elevation by 374 m over the Coast Mountains and Insular Mountains and by 240 m over the Rocky Mountains and consequently to an eastward shift towards the higher terrain of the Rocky Mountains. Transition regions comprised of only rain and snow were most common under both the CTRL and PGW simulations, although all seven transition region categories occurred. Transition region changes would enhance some of the factors leading to avalanches and would also impact ski resort operations.

pdf bib
A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada
Jared D. Wolfe | Kevin Shook | C. Spence | Colin J. Whitfield

Abstract. Classification and clustering approaches provide a means to group watersheds according to similar attributes, functions, or behaviours, and can aid in managing natural resources. Although they are widely used, approaches based on hydrological response parameters restrict analyses to regions where well-developed hydrological records exist, and overlook factors contributing to other management concerns, including biogeochemistry and ecology. In the Canadian Prairie, hydrometric gauging is sparse and often seasonal. Moreover, large areas are endorheic and the landscape is highly modified by human activity, complicating classification based solely on hydrological parameters. We compiled climate, geological, topographical, and land-cover data from the Prairie and conducted a classification of watersheds using a hierarchical clustering of principal components. Seven classes were identified based on the clustering of watersheds, including those distinguishing southern Manitoba, the pothole region, river valleys, and grasslands. Important defining variables were climate, elevation, surficial geology, wetland distribution, and land cover. In particular, three classes occur almost exclusively within regions that tend not to contribute to major river systems, and collectively encompass the majority of the study area. The gross difference in key characteristics across the classes suggests that future water management and climate change may carry with them heterogeneous sets of implications for water security across the Prairie. This emphasizes the importance of developing management strategies that target sub-regions expected to behave coherently as current human-induced changes to the landscape will affect how watersheds react to change. The study provides the first classification of watersheds within the Prairie based on climatic and biophysical attributes, with the framework used being applicable to other regions where hydrometric data are sparse. Our findings provide a foundation for addressing questions related to hydrological, biogeochemical, and ecological behaviours at a regional level, enhancing the capacity to address issues of water security.

pdf bib
Representation and improved parameterization of reservoir operation in hydrological and land-surface models
Fuad Yassin | Saman Razavi | Mohamed Elshamy | Bruce Davison | Gonzalo Sapriza-Azuri | H. S. Wheater

Abstract. Reservoirs significantly affect flow regimes in watershed systems by changing the magnitude and timing of streamflows. Failure to represent these effects limits the performance of hydrological and land-surface models (H-LSMs) in the many highly regulated basins across the globe and limits the applicability of such models to investigate the futures of watershed systems through scenario analysis (e.g., scenarios of climate, land use, or reservoir regulation changes). An adequate representation of reservoirs and their operation in an H-LSM is therefore essential for a realistic representation of the downstream flow regime. In this paper, we present a general parametric reservoir operation model based on piecewise-linear relationships between reservoir storage, inflow, and release to approximate actual reservoir operations. For the identification of the model parameters, we propose two strategies: (a) a “generalized” parameterization that requires a relatively limited amount of data and (b) direct calibration via multi-objective optimization when more data on historical storage and release are available. We use data from 37 reservoir case studies located in several regions across the globe for developing and testing the model. We further build this reservoir operation model into the MESH (Modélisation Environmentale-Surface et Hydrologie) modeling system, which is a large-scale H-LSM. Our results across the case studies show that the proposed reservoir model with both parameter-identification strategies leads to improved simulation accuracy compared with the other widely used approaches for reservoir operation simulation. We further show the significance of enabling MESH with this reservoir model and discuss the interdependent effects of the simulation accuracy of natural processes and that of reservoir operations on the overall model performance. The reservoir operation model is generic and can be integrated into any H-LSM.