Remote Sensing of Environment, Volume 237


Anthology ID:
G20-130
Month:
Year:
2020
Address:
Venue:
GWF
SIG:
Publisher:
Elsevier BV
URL:
https://gwf-uwaterloo.github.io/gwf-publications/G20-130
DOI:
Bib Export formats:
BibTeX MODS XML EndNote

pdf bib
L-Band response to freeze/thaw in a boreal forest stand from ground- and tower-based radiometer observations
Alexandre Roy | Peter Toose | Alex Mavrovic | Christoforos Pappas | A. Royer | Chris Derksen | Aaron Berg | Tracy Rowlandson | Mariam El-Amine | Alan G. Barr | Andrew Black | Alexandre Langlois | Oliver Sonnentag

Abstract The extent, timing and duration of seasonal freeze/thaw (FT) state exerts dominant control on boreal forest carbon, water and energy cycle processes. Recent and on-going L-Band (≈1.4 GHz) spaceborne missions have the potential to provide enhanced information on FT state over large geographic regions with rapid revisit time. However, the low spatial resolution of these spaceborne observations (≈45 km) makes it difficult to isolate the primary contributions (soil, vegetation, snow) to the FT signal in boreal forest. To better quantify these controls, two L-Band radiometers were deployed (September 2016 to July 2017) at a black spruce (Picea mariana) dominated boreal forest site; one unit above and one unit on the ground surface below the canopy to disentangle the microwave contributions of overstory canopy, and the ground surface on the FT brightness temperature (TB) signal. Bi-weekly multi-angular measurements from both units were combined in order to estimate effective scattering albedo (ω) and the microwave vegetative optical depth (τ), using the τ-ω microwave vegetation radiative transfer model. Soil moisture probes were inserted in the trunk of two black spruce and one larch (Larix laricina) trunks located in the footprint of the above-canopy radiometer to measure tree trunk relative dielectric constant (RDCtree). Results showed a strong relationship between RDCtree and tree skin temperature (Ttree) under freezing temperature conditions, which led to a gradual decrease of τ in winter. During the spring thawing period in April and May, τ remained relatively stable. In contrast, it increased substantially in June, most likely in relation to the growing season onset. Overall, τ was related to the seasonal RDCtree cycle (r = 0.76). Regarding ω, a value of 0.086 (±0.029) was obtained, but no dependency on Ttree or RDCtree was observed. Despite the observed impact of FT on vegetation L-Band signals, results from continuous TB observations spanning from 14 September 2016 to 25 May 2017, indicated that the main contribution to the observed L-Band TB freeze-up signal in the fall originated from the ground surface. The above-canopy unit showed some sensitivity to overstory canopy FT, yet the sensitivity was lower compared to the signal induced by the ground FT. In April and May, L-Band radiometer FT retrieval agreed closely to the melt onset detection using RDCtree but it was likely related to the coincident presence of liquid water in the snow. Our findings have important applications to L-Band spaceborne FT algorithm development and validation across the boreal forest. More specifically, our findings allow better quantification of the potential effect of frozen ground on various biogeophysical and biogeochemical processes in boreal forests.

pdf bib
Evolution of evapotranspiration models using thermal and shortwave remote sensing data
Jing M. Chen | Jane Liu

Evapotranspiration (ET) from the land surface is an important component of the terrestrial hydrological cycle. Since the advent of Earth observation by satellites, various models have been developed to use thermal and shortwave remote sensing data for ET estimation. In this review, we provide a brief account of the key milestones in the history of remote sensing ET model development in two categories: temperature-based and conductance-based models. Temperature-based ET models utilize land surface temperature (LST) observed through thermal remote sensing to calculate the sensible heat flux from which ET is estimated as a residual of the surface energy balance or to estimate the evaporative fraction from which ET is derived from the available energy. Models of various complexities have been developed to estimate ET from surfaces of different vegetation fractions. One-source models combine soil and vegetation into a composite surface for ET estimation, while two-source models estimate ET of soil and vegetation components separately. Image contexture-based triangular and trapezoid models are simple and effective temperature-based ET models based on spatial and/or temporal variation patterns of LST. Several effective temporal scaling schemes are available for extending instantaneous temperature-based ET estimation to daily or longer time periods. Conductance-based ET models usually use the Penman-Monteith (P-M) equation to estimate ET with shortwave remote sensing data. A key put to these models is canopy conductance to water vapor, which depends on canopy structure and leaf stomatal conductance. Shortwave remote sensing data are used to determine canopy structural parameters, and stomatal conductance can be estimated in different ways. Based on the principle of the coupling between carbon and water cycles, stomatal conductance can be reliably derived from the plant photosynthesis rate. Three types of photosynthesis models are available for deriving stomatal or canopy conductance: (1) big-leaf models for the total canopy conductance, (2) two-big-leaf models for canopy conductances for sunlit and shaded leaf groups, and (3) two-leaf models for stomatal conductances for the average sunlit and shaded leaves separately. Correspondingly, there are also big-leaf, two-big-leaf and two-leaf ET models based on these conductances. The main difference among them is the level of aggregation of conductances before the P-M equation is used for ET estimation, with big-leaf models having the highest aggregation. Since the relationship between ET and conductance is nonlinear, this aggregation causes negative bias errors, with the big-leaf models having the largest bias. It is apparent from the existing literature that two-leaf conductance-based ET models have the least bias in comparison with flux measurements. Based on this review, we make the following recommendations for future work: (1) improving key remote sensing products needed for ET mapping purposes, including soil moisture, foliage clumping index, and leaf carboxylation rate, (2) combining temperature-based and conductance-based models for regional ET estimation, (3) refining methodologies for tight coupling between carbon and water cycles, (4) fully utilizing vegetation structural and biochemical parameters that can now be reliably retrieved from shortwave remote sensing, and (5) to improve regional and global ET monitoring capacity.