Environmental Research, Volume 212
- Anthology ID:
- G22-142
- Month:
- Year:
- 2022
- Address:
- Venue:
- GWF
- SIG:
- Publisher:
- Elsevier BV
- URL:
- https://gwf-uwaterloo.github.io/gwf-publications/G22-142
- DOI:
Effects of in situ experimental selenium exposure on finescale dace (Phoxinus neogaeus) gut microbiome
Phillip J. Ankley
|
Stephanie D. Graves
|
Yuwei Xie
|
Abigail DeBofsky
|
Alana Weber
|
Markus Brinkmann
|
Vince Palace
|
Karsten Liber
|
Markus Hecker
|
David M. Janz
|
John P. Giesy
Selenium (Se) is an environmental contaminant of global concern that can cause adverse effects in fish at elevated levels. Fish gut microbiome play essential roles in gastrointestinal function and host health and can be perturbed by environmental contaminants, including metals and metalloids. Here, an in-situ Se exposure of female finescale dace (Phoxinus neogaeus) using mesocosms was conducted to determine the impacts of Se accumulation on the gut microbiome and morphometric endpoints. Prior to this study, the gut microbiome of finescale dace, a widespread Cyprinid throughout North America, had not been characterized. Exposure to Se caused a hormetic response of alpha diversity of the gut microbiome, with greater diversity at the lesser concentration of 1.6 μg Se/L, relative to that of fish exposed to the greater concentration of 5.6 μg Se/L. Select gut microbiome taxa of fish were differentially abundant between aqueous exposure concentrations and significantly correlated with liver-somatic index (LSI). The potential effects of gut microbiome dysbiosis on condition of wild fish might be a consideration when assessing adverse effects of Se in aquatic environments. More research regarding effects of Se on field-collected fish gut microbiome and the potential adverse effects or benefits on the host is warranted.
Comparison of primary and secondary sludge carbon sources derived from hydrolysis or acidogenesis for nitrate reduction and denitrification kinetics: Organics utilization and microbial community shift
Yiding Guo
|
Liang Guo
|
Jin Chen
|
Yangguo Zhao
|
Mengchun Gao
|
Junyuan Ji
|
Zhigang She
|
John P. Giesy
Seeking available and economical carbon sources for denitrification process is an intractable issue for wastewater treatment. However, no study compared different types of waste sludge as carbon source from denitrification mechanism, organics utilization and microbial community aspects. In this study, primary and secondary sludge were pretreated by thermophilic bacteria (TB), and its hydrolysis or acidogenic liquid were prepared as carbon sources for denitrification. At C/N of 8-3, the variations of NO3--N and NO2--N were profiled in typical cycles and denitrification kinetics was analyzed. Primary sludge achieved a competitive NOX-N removal efficiency with less dosage than secondary sludge. Fourier transform infrared (FTIR) spectroscopy was introduced to analyze organic composition from functional-group perspective and the utilization of organic matters in different sludge carbon sources was investigated. To further analyze the microbial community shift in different denitrification systems, high-throughput sequencing technology was applied. Results showed that denitrifier Thauera, belonging to Proteobacteria, was predominant, and primary sludge acidogenic liquid enriched Thauera most intensively with relative abundance of 47.3%.